
Python

unknown

Mar 18, 2021

CONTENTS

1 See also 3

2 Table of contents 5
2.1 The Standard (core) . 5
2.2 Country-Specific Extensions . 18
2.3 Forks and variants . 21
2.4 List of software categories . 22
2.5 Scope list . 25
2.6 Examples . 26

i

ii

Python

publiccode.yml is a metadata standard for repositories containing software developed or acquired by the Public
Administration, aimed at making them easily discoverabile and thus reusable by other entities.

By including a publiccode.yml file in the root of a repository, and populating it with information about the
software, technicians and civil servants can evaluate it. Automatic indexing tools can also be built, since the format is
easily readable by both humans and machines.

publiccode.yml is mandatory for all public software developed in Italy, according to the national guidelines:
this enables the Developers Italia crawler to build the national software catalog. The standard is designed to be
interoperable internationally, thus the country-specific keys are separated by the core part and are defined in specific
sections that each government can rule.

Details carried by a publiccode.yml file include:

• title and description of the project or product (in one or more languages);

• development state (e.g., concept, development, beta, stable, obsolete;

• contacts of the entity who published the codebase;

• contacts of the maintainer, if any, including the expire date of the maintenance contract;

• information about the legal context for which the project or product was designed;

• dependencies.

and much more.

CONTENTS 1

https://docs.italia.it/AgID/linee-guida-riuso-software/lg-acquisizione-e-riuso-software-per-pa-docs/
https://developers.italia.it/

Python

2 CONTENTS

CHAPTER

ONE

SEE ALSO

• More information about software reuse

• publiccode.yml web editor

3

https://developers.italia.it/en/reuse
https://publiccode-editor.developers.italia.it/

Python

4 Chapter 1. See also

CHAPTER

TWO

TABLE OF CONTENTS

2.1 The Standard (core)

This document represents the description of the publiccode.yml schema.

2.1.1 Top-Level Keys and Sections

Key publiccodeYmlVersion

• Type: string

• Presence: mandatory

• Example: "0.1"

This key specifies the version to which the current publiccode.yml adheres to, for forward compatibility.

Key name

• Type: string

• Presence: mandatory

• Example: "Medusa"

This key contains the name of the software. It contains the (short) public name of the product, which can be localised
in the specific localisation section. It should be the name most people usually refer to the software. In case the
software has both an internal “code” name and a commercial name, use the commercial name.

Key applicationSuite

• Type: string

• Presence: optional

• Example: "MegaProductivitySuite"

This key contains the name of the “suite” to which the software belongs.

5

Python

Key url

• Type: string (URL)

• Presence: mandatory

• Example: "https://example.com/italia/medusa.git"

A unique identifier for this software. This string must be a URL to the source code repository (git, svn, . . .) in which
the software is published. If the repository is available under multiple protocols, prefer HTTP/HTTPS URLs which
don’t require user authentication.

Forks created for the purpose of contributing upstream should not modify this file; this helps software parsing
publiccode.yml to immediately skip technical forks. On the contrary, a complete fork that is meant to be main-
tained separately from the original software should modify this line, to give themselves the status of a different project.

See Forks and variants for a complete description of what is a software variant and how to handle forked software as
a parser or an author.

Key landingURL

• Type: string (URL)

• Presence: optional

• Example: "https://example.com/italia/medusa"

If the url parameter does not serve a human readable or browsable page, but only serves source code to a source
control client, with this key you have an option to specify a landing page. This page, ideally, is where your users will
land when they will click a button labeled something like “Go to the application source code”. In case the product
provides an automated graphical installer, this URL can point to a page which contains a reference to the source code
but also offers the download of such an installer.

Key isBasedOn

• Type: string or array of strings

• Presence: optional

• Example: "https://github.com/italia/otello.git"

In case this software is a variant or a fork of another software, which might or might not contain a publiccode.yml
file, this key will contain the url of the original project(s).

The existence of this key identifies the fork as a software variant, descending from the specified repositories.

Key softwareVersion

• Type: string

• Presence: optional

• Example: "1.0", "dev"

This key contains the latest stable version number of the software. The version number is a string that is not meant
to be interpreted and parsed but just displayed; parsers should not assume semantic versioning or any other specific
version format.

The key can be omitted if the software is currently in initial development and has never been released yet.

6 Chapter 2. Table of contents

Python

Key releaseDate

• Type: string (date)

• Presence: mandatory

• Example: "2017-04-15"

This key contains the date at which the latest version was released. This date is mandatory if the software has been
released at least once and thus the version number is present.

Key logo

• Type: string (relative path to file or absolute URL)

• Presence: optional

• Acceptable formats: SVG, SVGZ, PNG

• Example: "img/logo.svg"

This key contains the path to the logo of the software. Logos should be in vector format; raster formats are only
allowed as a fallback. In this case, they should be transparent PNGs, minimum 1000px of width. The key value can be
the relative path to the file starting from the root of the repository, or it can be an absolute URL pointing to the logo in
raw version. In both cases, the file must reside inside the same repository where the publiccode.yml file is stored.

Key monochromeLogo

• Type: string (path to file)

• Presence: optional

• Acceptable formats: SVG, SVGZ, PNG

• Example: "img/logo-mono.svg"

A monochromatic (black) logo. The logo should be in vector format; raster formats are only allowed as a fallback. In
this case, they should be transparent PNGs, minimum 1000px of width. The key value can be the relative path to the
file starting from the root of the repository, or it can be an absolute URL pointing to the logo in raw version. In both
cases, the file must reside inside the same repository where the publiccode.yml file is stored.

Key inputTypes

• Type: array of enumerated strings

• Presence: optional

• Values: as per RFC 6838

• Example: "text/plain"

A list of Media Types (MIME Types) as mandated in RFC 6838 which the application can handle as input.

In case the software does not support any input, you can skip this field or use application/x.empty.

2.1. The Standard (core) 7

https://tools.ietf.org/html/rfc6838

Python

Key outputTypes

• Type: array of enumerated strings

• Presence: optional

• Values: as per RFC 6838

• Example: "text/plain"

A list of Media Types (MIME Types) as mandated in RFC 6838 which the application can handle as output.

In case the software does not support any output, you can skip this field or use application/x.empty.

Key platforms

• Type: enumerated string or array of strings

• Presence: mandatory

• Values: web, windows, mac, linux, ios, android. Human readable values outside this list are allowed.

• Example: web

This key specifies which platform the software runs on. It is meant to describe the platforms that users will use to
access and operate the software, rather than the platform the software itself runs on.

Use the predefined values if possible. If the software runs on a platform for which a predefined value is not available,
a different value can be used.

Key categories

• Type: array of strings

• Presence: mandatory

• Acceptable values: see List of software categories

A list of words that can be used to describe the software and can help building catalogs of open software.

The controlled vocabulary List of software categories contains the list of allowed values.

Key usedBy

• Type: array of strings

• Presence: optional

A list of the names of prominent public administrations (that will serve as “testimonials”) that are currently known to
the software maintainer to be using this software.

Parsers are encouraged to enhance this list also with other information that can obtain independently; for instance, a
fork of a software, owned by an administration, could be used as a signal of usage of the software.

8 Chapter 2. Table of contents

https://tools.ietf.org/html/rfc6838

Python

Key roadmap

• Type: string

• Presence: optional

A link to a public roadmap of the software.

Key developmentStatus

• Type: enumerated string

• Presence: mandatory

• Allowed values: concept, development, beta, stable, obsolete

The keys are:

• concept - The software is just a “concept”. No actual code may have been produced, and the repository could
simply be a placeholder.

• development - Some effort has gone into the development of the software, but the code is not ready for the
end user, even in a preliminary version (beta or alpha) to be tested by end users.

• beta - The software is in the testing phase (alpha or beta). At this stage, the software might or might not have
had a preliminary public release.

• stable - The software has seen a first public release and is ready to be used in a production environment.

• obsolete - The software is no longer maintained or kept up to date. All of the source code is archived and
kept for historical reasons.

Key softwareType

• Type: enumerated string

• Presence: mandatory

• Allowed values: "standalone/mobile", "standalone/iot", "standalone/desktop",
"standalone/web", "standalone/backend", "standalone/other", "addon", "library",
"configurationFiles"

The keys are:

• standalone/mobile - The software is a standalone, self-contained The software is a native mobile app.

• standalone/iot - The software is suitable for an IoT context.

• standalone/desktop - The software is typically installed and run in a a desktop operating system envi-
ronment.

• standalone/web - The software represents a web application usable by means of a browser.

• standalone/backend - The software is a backend application.

• standalone/other - The software has a different nature from the once listed above.

• softwareAddon - The software is an addon, such as a plugin or a theme, for a more complex software (e.g. a
CMS or an office suite).

• library - The software contains a library or an SDK to make it easier to third party developers to create new
products.

2.1. The Standard (core) 9

Python

• configurationFiles - The software does not contain executable script but a set of configuration files.
They may document how to obtain a certain deployment. They could be in the form of plain configuration files,
bash scripts, ansible playbooks, Dockerfiles, or other instruction sets.

Section intendedAudience

Key intendedAudience/countries

• Type: array of strings

• Presence: optional

This key explicitly includes certain countries in the intended audience, i.e. the software explicitly claims compliance
with specific processes, technologies or laws. All countries are specified using lowercase ISO 3166-1 alpha-2 two-
letter country codes.

Key intendedAudience/unsupportedCountries

• Type: array of strings

• Presence: optional

This key explicitly marks countries as NOT supported. This might be the case if there is a conflict between how
software is working and a specific law, process or technology. All countries are specified using lowercase ISO 3166-1
alpha-2 two-letter country codes.

Key intendedAudience/scope

• Type: array of strings

• Presence: optional

• Acceptable values: see Scope list

This key contains a list of tags related to the field of application of the software.

Section description

This section contains a general description of the software. Parsers can use this section for instance to create a web
page describing the software.

Note: since all the strings contained in this section are user-visible and written in a specific language, you must specify
the language you are editing the text in (using the IETF BCP 47 specifications) by creating a sub-section with that
name. The primary language subtag cannot be omitted, as mandated by the BCP 47.

An example for English:

description:
en:
shortDescription: ...
longDescription: ...

In the following part of the document, all keys are assumed to be in a sub-section with the name of the language (we
will note this with [lang]).

Note: it is mandatory to have at least one language in this section. All other languages are optional.

10 Chapter 2. Table of contents

https://tools.ietf.org/html/bcp47

Python

Key description/[lang]/localisedName

• Type: string

• Presence: optional

• Example: "Medusa"

This key is an opportunity to localise the name in a specific language. It contains the (short) public name of the
product. It should be the name most people usually refer to the software. In case the software has both an internal
“code” name and a commercial name, use the commercial name.

Key description/[lang]/genericName

• Type: string (max 35 chars)

• Presence: mandatory

• Example: "Text Editor"

This key is the “Generic name”, which refers to the specific category to which the software belongs. You can usually
find the generic name in the presentation of the software, when you write: “Software xxx is a yyy”. Notable examples
include “Text Editor”, “Word Processor”, “Web Browser”, “Chat” and so on. . . The generic name can be up to 35
characters long.

Key description/[lang]/shortDescription

• Type: string (max 150 chars)

• Presence: mandatory

• Example: "Advanced booking system for hospitals"

This key contains a short description of the software. It should be a single line containing a single sentence. Maximum
150 characters are allowed.

Key description/[lang]/longDescription

• Type: string (min 500 chars, max 10000 chars)

• Presence: mandatory (for at least one language)

This key contains a longer description of the software, between 500 and 10000 chars. It is meant to provide an
overview of the capabilities of the software for a potential user. The audience for this text should be that of users of
the software, not developers. You can think of this text as the description of the software that would be in its website
(if the software had one).

This description can contain some basic markdown: *italic*, **bold**, bullet points and [links](#).

2.1. The Standard (core) 11

Python

Key description/[lang]/documentation

• Type: URL

• Presence: optional

This key contains a reference to the user-level (not developer-level) documentation of the software. The value must be
a URL to a hosted version of the documentation.

It is suggested that the URL points to a hosted version of the documentation that is immediately readable through
a common web browser in both desktop and mobile format. The documentation should be rendered in HTML and
browsable like a website (with a navigation index, a search bar, etc.).

If the documentation is instead available only as a document, put a direct view/download link as URL in this key.
You should commit the document as part of the source code repository, and then link to it using the code hosting
source browser URL (e.g.: GitHub URL to the file). Prefer using open formats like PDF or ODT for maximum
interoperability.

Whichever the format for the documentation, remember to make its source files available under an open license,
possibly by committing them as part of the repository itself.

Key description/[lang]/apiDocumentation

• Type: URL

• Presence: optional

This key contains a reference to the API documentation of the software. The value must be a URL to a hosted version
of the documentation.

It is suggested that the URL points to a hosted version of the documentation that is immediately readable through
a common web browser. The documentation should be rendered in HTML and browsable like a website (with a
navigation index, a search bar, etc.), and if there is a reference or test deployment, possibly offer an interactive interface
(e.g. Swagger).

If the documentation is instead available only as a document, put a direct view/download link as URL in this key.
You should commit the document as part of the source code repository, and then link to it using the code hosting
source browser URL (e.g.: GitHub URL to the file). Prefer using open formats like PDF or ODT for maximum
interoperability.

Whichever the format for the documentation, remember to make its source files available under an open license,
possibly by committing them as part of the repository itself.

Key description/[lang]/features

• Type: array of strings

• Presence: mandatory (for at least one language)

This key contains a list of software features, describing what capabilities the software allows to do. The audience for
this text should be that of public decision makers who will be commissioning the software. The features should thus
not target developers; instead of listing technical features referring to implementation details, prefer listing user-visible
functionalities of the software.

While the key is mandatory, there is no mandatory minimum or maximum number of features that should be listed in
this key. Each feature must use a maximum of 100 characters.

The suggested number of features to list is between 5 and 20, depending on the software size and complexity. There
is no need for exhaustiveness, as users can always read the documentation for additional information.

12 Chapter 2. Table of contents

Python

Key description/[lang]/screenshots

• Type: array of strings (paths)

• Presence: optional

• Formats: PNG, JPG

• Example: "data/screenshots/configuration.png"

This key contains one or multiple paths to files showing screenshots of the software. They are meant to give a quick
idea on how the software looks like and how it works. The key value can be the relative path to the file starting from
the root of the repository, or it can be an absolute URL pointing to the screenshot in raw version. In both cases, the file
must reside inside the same repository where the publiccode.yml file is stored.

Screenshots can be of any shape and size; the suggested formats are:

• Desktop: 1280x800 @1x

• Tablet: 1024x768 @2x

• Mobile: 375x667 @2x

Key description/[lang]/videos

• Type: array of strings (URLs)

• Presence: optional

• Example: "https://youtube.com/xxxxxxxx"

This key contains one or multiple URLs of videos showing how the software works. Like screenshots, videos should
be used to give a quick overview on how the software looks like and how it works. Videos must be hosted on a video
sharing website that supports the oEmbed standard; popular options are YouTube and Vimeo.

Since videos are an integral part of the documentation, it is recommended to publish them with an open license.

Key description/[lang]/awards

• Type: array of strings

• Presence: optional

A list of awards won by the software.

Section legal

Key legal/license

• Type: string

• Presence: mandatory

• Example: "AGPL-3.0-or-later"

This string describes the license under which the software is distributed. The string must contain a valid SPDX
expression, referring to one (or multiple) open-source license. Please refer to the SPDX documentation for further
information.

2.1. The Standard (core) 13

https://oembed.com
https://spdx.org/licenses/

Python

Key legal/mainCopyrightOwner

• Type: string

• Presence: optional

• Example: "City of Amsterdam"

This string describes the entity that owns the copyright on “most” of the code in the repository. Normally, this is the
line that is reported with the copyright symbol at the top of most files in the repo.

It is possible to list multiple owners if required so, using an English sentence. It is also possible to informally refer to
a community of group of people like “Linus Torvalds and all Linux contributors”.

In case it is not possible to name a main copyright owner, it is possible to omit this key; in those cases, if the repo has
a authors file, you can point to it through legal/authorsFile.

Key legal/repoOwner

• Type: string

• Presence: optional

• Example: "City of Amsterdam"

This string describes the entity that owns this repository; this might or might not be the same entity who owns the
copyright on the code itself. For instance, in case of a fork of the original software, the repoOwner is probably
different from the mainCopyrightOwner.

Key legal/authorsFile

• Type: string (path to file)

• Presence: optional

• Example: "doc/AUTHORS.txt"

Some open-source software adopt a convention of identify the copyright holders through a file that lists all the entities
that own the copyright. This is common in projects strongly backed by a community where there are many external
contributors and no clear single/main copyright owner. In such cases, this key can be used to refer to the authors file,
using a path relative to the root of the repository.

Section maintenance

This section provides information on the maintenance status of the software, useful to evaluate whether the software
is actively developed or not.

14 Chapter 2. Table of contents

Python

Key maintenance/type

• Type: enumerate

• Presence: mandatory

• Values: "internal", "contract", "community", "none"

This key describes how the software is currently maintained.

• internal - means that the software is internally maintained by the repository owner;

• contract - means that there is a commercial contract that binds an entity to the maintenance of the software;

• community - means that the software is currently maintained by one or more people that donate their time to
the project;

• none - means that the software is not actively maintained.

Key maintenance/contractors

• Type: array of Contractor (see below)

• Presence: mandatory (if maintenance/type is contract)

This key describes the entity or entities, if any, that are currently contracted for maintaining the software. They can be
companies, organizations, or other collective names.

Key maintenance/contacts

• Type: List of Contacts (see below)

• Presence: mandatory (if maintenance/type is internal or community)

One or more contacts maintaining this software.

This key describes the technical people currently responsible for maintaining the software. All contacts need to be a
physical person, not a company or an organisation. If somebody is acting as a representative of an institution, it must
be listed within the affiliation of the contact.

In case of a commercial agreement (or a chain of such agreements), specify the final entities actually contracted to
deliver the maintenance. Do not specify the software owner unless it is technically involved with the maintenance of
the product as well.

Section localisation

This section provides an overview of the localization features of the software.

2.1. The Standard (core) 15

Python

Key localisation/localisationReady

• Type: boolean

• Presence: mandatory

If yes, the software has infrastructure in place or is otherwise designed to be multilingual. It does not need to be
available in more than one language.

Key localisation/availableLanguages

• Type: list of IETF BCP 47 language tags

• Presence: mandatory

• Example: "it", "en", "sl-IT-nedis"

If present, this is the list of languages in which the software is available. Of course, this list will contain at least one
language. The primary language subtag cannot be omitted, as mandated by the BCP 47.

Section dependsOn

This section provides an overview on the system-level dependencies required to install and use this software.

NOTE: do not list dependencies at the source code level (e.g.: software libraries being used), and focus only on
runtime and/or system-level dependencies that must be installed and maintained separately. For instance, a database
is a good example of such dependencies.

Key dependsOn/open

• Type: array of dependency (see below)

• Presence: optional

This key contains a list of runtime dependencies that are distributed under an open-source license.

Key dependsOn/proprietary

• Type: array of dependency (see below)

• Presence: optional

This key contains a list of runtime dependencies that are distributed under a proprietary license.

Key dependsOn/hardware

• Type: array of dependency (see below)

• Presence: optional

This key contains a list of hardware dependencies that must be owned to use the software.

16 Chapter 2. Table of contents

https://tools.ietf.org/html/bcp47

Python

2.1.2 Special data formats

Dependency

A dependency is a complex object. The properties are the following:

• name - mandatory - The name of the dependency (e.g. MySQL, NFC Reader)

• versionMin - the first compatible version

• versionMax - the latest compatible version

• version - the only major version for which the software is compatible. It assumes compatibility with all
patches and bugfixes later applied to this version.

• optional - whether the dependency is optional or mandatory

Complex versioning

It is of course possible to use the various keys to specify a complex compatibility matrix.

Ex. 1

- name: PostgreSQL
version: "3.2"
optional: yes

This snippet marks an optional dependency on PostgreSQL exactly version 3.2.

Ex. 2

- name: MySQL
versionMin: "1.1"
versionMax: "1.3"

This snippet marks a mandatory dependency on MySQL, allowing any version between 1.1 and 1.3.

Contact

A Contact is an object with the following properties:

• name - mandatory - This key contains the full name of one of the technical contacts. It must be a real person;
do NOT populate this key with generic contact information, company departments, associations, etc.

• email - This key contains the e-mail address of the technical contact. It must be an email address of where
the technical contact can be directly reached; do NOT populate this key with mailing-lists or generic contact
points like “info@acme.inc”. The e-mail address must not be obfuscated. To improve resistance against e-mail
collection, use \x64 to replace @, as allowed by the YAML specification.

• phone - phone number (with international prefix). This has to be a string.

• affiliation - This key contains an explicit affiliation information for the technical contact. In case of
multiple maintainers, this can be used to create a relation between each technical contact and each maintainer
entity. It can contain for instance a company name, an association name, etc.

2.1. The Standard (core) 17

mailto:info@acme.inc

Python

Contractor

A Contractor is an object with the following properties:

• name - mandatory - The name of the contractor, whether it’s a company or a physical person.

• until - mandatory - This is a date (YYYY-MM-DD). This key must contain the date at which the maintenance
is going to end. In case of community maintenance, the value should not be more than 2 years in the future, and
thus will need to be regularly updated as the community continues working on the project.

• email - This key contains the e-mail address of the technical contact. It must be an email address of where
the technical contact can be directly reached; do NOT populate this key with mailing-lists or generic contact
points like “info@acme.inc”. The e-mail address must not be obfuscated. To improve resistance against e-mail
collection, use \x64 to replace @, as allowed by the YAML specification.

• website - This key points to the maintainer website. It can either point to the main institutional website, or to
a more project-specific page or website.

Dates

All dates in publiccode.yml must follow the format “YYYY-MM-DD”, which is one of the ISO8601 allowed
formats. This is the only allowed format though, so not the full ISO8601 is allowed for the date keys.

Encoding

publiccode.yml MUST be UTF-8 encoded.

2.2 Country-Specific Extensions

While the standard is structured to be meaningful on an international level, there are additional information that can
be added that makes sense in specific countries, such as declaring compliance with local laws or regulations. The
provided extension mechanism is the usage of country-specific sections.

All country-specific extensions are contained in a section named with the two-letter lowercase ISO 3166-1 alpha-2
country code. For instance spid is a property for Italian software declaring whether the software is integrated with
the Italian Public Identification System.

If a software is compliant I will find:

it:
countryExtensionVersion: "0.2"
piattaforme:
- spid: yes

Notice that country-specific extensions within international sections are not allowed. Countries that want to extend the
format should add a country-specific section instead.

18 Chapter 2. Table of contents

mailto:info@acme.inc
https://it.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://it.wikipedia.org/wiki/ISO_3166-1_alpha-2

Python

2.2.1 Italy

All the extensions listed below are specific for Italy and, as such, they must be inserted in a section named with the it
code. Every Country is specified using a two letters country code following the ISO 3166-1 alpha-2 standard.

Key countryExtensionVersion

• Type: string

• Presence: mandatory

• Example: "1.0"

This key specifies the version to which the current extension schema adheres to, for forward compatibility.

Please note how the value of this key is independent from the top-level publiccodeYmlVersion one (see The
Standard (core)). In such a way, the extensions schema versioning is independent both from the core version of the
schema and from every other Country.

Key conforme

This section contains the keys for auto-declaring the compliance with the current legislation, with respect to the
following sections. Not including these keys implies that the compliance is not known or not declared.

Key conforme/lineeGuidaDesign

• Type: boolean

• Presence: optional

If present and set to yes, the software is compliant with the Italian accessibility laws (L. 4/2004), as further explained
in the linee guida di design (Italian language).

Key conforme/modelloInteroperatibilita

• Type: boolean

• Presence: optional

If present and set to yes, the software is compliant with the linee guida sull’interoperabilità.

Regulatory reference: Art. 73 del CAD (Italian language).

Key conforme/misureMinimeSicurezza

• Type: boolean

• Presence: optional

If present and set to yes, the software is compliant with the Misure minime di sicurezza ICT per le Pubbliche ammin-
istrazioni (Italian language).

2.2. Country-Specific Extensions 19

https://docs.italia.it/italia/designers-italia/design-linee-guida-docs
https://docs.italia.it/italia/piano-triennale-ict/lg-modellointeroperabilita-docs
https://docs.italia.it/italia/piano-triennale-ict/codice-amministrazione-digitale-docs/it/v2017-12-13/_rst/capo8_art73.html
https://www.agid.gov.it/it/sicurezza/misure-minime-sicurezza-ict
https://www.agid.gov.it/it/sicurezza/misure-minime-sicurezza-ict

Python

Key conforme/gdpr

• Type: boolean

• Presence: optional

If present and set to yes, the software respects the GDPR.

Section piattaforme

Key piattaforme/spid

• Type: boolean

• Presence: optional

If present and set to yes, the software interfaces with SPID - il Sistema Pubblico di Identità Digitale.

Key piattaforme/cie

• Type: boolean

• Presence: optional

If present and set to yes, the software interfaces with the Italian electronic ID card (Carta di Identità
Elettronica).

Key piattaforme/anpr

• Type: boolean

• Presence: optional

If present and set to yes, the software interfaces with ANPR.

Key piattafome/pagopa

• Type: boolean

• Presence: optional

If present and set to yes, the software interfaces with pagoPA.

Section riuso

This section contains a set of keys related to the publication of the software inside the reuse catalog of Developers
Italia.

20 Chapter 2. Table of contents

https://developers.italia.it/it/spid
https://developers.italia.it
https://developers.italia.it

Python

Chiave riuso/codiceIPA

• Type: string (iPA code)

• Presence: mandatory if repoOwner is a Public Administration

• Example: c_h501

This key represents the administration code inside the Public Administration index (codice IPA).

2.3 Forks and variants

As already cited before, a fork may have two different forms based on the final aim. As such, in order to make it clear
how to handle the publiccode.yml in both cases, below we define two different semantics: technical forks and software
variants.

2.3.1 Technical forks (i.e. to publish patches)

A technical fork is a fork made by a developer for the purpose of working on the original code base or sending
improvements to the original authors, without any explicit goal of creating and publishing an alternative variant of the
original software.

In the context of distributed control systems and collaborative code hosting platforms like GitHub, forking is almost
always used by developers as a step to work on a contribution on an existing codebase, by sending “pull requests”.

Because of the way forking works on GitHub and other platforms, developers publish their forks as perfect copies of
the original software, thus including also publiccode.yml. However, parsers need to be able to distinguish such
technical forks from the original codebase.

Parsers

Parsers SHOULD identify a technical fork by noticing that the top-level url key does not point to the repository in
which the publiccode.yml is found.

Parsers MIGHT identify a technical fork also through metadata that might be exposed by the code hosting platform
(eg: GitHub marks forks explicitly as forks)

Authors

Authors of technical forks SHOULD NOT modify publiccode.yml in any way. Specifically, they MUST NOT
modify the top-level url key that MUST continue pointing to the original repository.

There is no explicit key to mark a fork as a technical fork. This is a conscious design decision because we do not
want authors of technical forks to be aware of publiccode.yml and necessarily be aware of how to modify it. The
current design does not require authors to do anything.

2.3. Forks and variants 21

Python

2.3.2 Software variants

A software variant is a fork that is offered as an alternative to the original upstream software.

It contains modifications that are still not part of the upstream version, like more features, different dependencies,
optimizations, etc.

By marking a fork as a variant, the author indicates that they believe that the variant includes a complete and working
set of modifications that might be useful to other people.

Marking a fork as a variant does not relate to the willingness of contributing upstream; the author might still plan to
contribute the modifications upstream, or even being in the process of doing so. Thus, even if the fork will eventually
be merged upstream, it might make sense to mark it as a variant during the process, so that others might discover it
and benefit from it.

Parsers

Parsers SHOULD identify a variant by noticing that the top-level url key matches to the repository in which the
publiccode.yml is found, AND a top-level isBasedOn exists and points to a different repository.

Parsers should expect and analyze other differences in publiccode.yml between variants of the software. Specif-
ically description/features is designed to be compared across variants to identify and show user-visible
differences.

Authors

Authors that are willing to publish a fork as a variant MUST at least:

• add a key isBasedOn pointing to one or more upstream repositories from which this variant is derived.

• Change the value for url to point to the repository holding the variant.

• Change the value for legal/repoOwner to refer to the themselves (the authors of the variant).

• Revisit the maintenance section to refer to the maintenance status of the variant.

Moreover, authors SHOULD evaluate the following changes:

• add the features that differentiate the variant to the description/features key. Existing features
SHOULD NOT be edited or removed from this list unless they have been removed from the variant, to al-
low parsers to easily compare feature lists.

2.4 List of software categories

Here follows a controlled vocabulary of useful tags for categorizing the software.

22 Chapter 2. Table of contents

Python

2.4.1 Valid Tags

• accounting

• agile-project-management

• applicant-tracking

• application-development

• appointment-scheduling

• backup

• billing-and-invoicing

• blog

• budgeting

• business-intelligence

• business-process-management

• cad

• call-center-management

• cloud-management

• collaboration

• communications

• compliance-management

• contact-management

• content-management

• crm

• customer-service-and-support

• data-analytics

• data-collection

• data-visualization

• digital-asset-management

• digital-citizenship

• document-management

• donor-management

• e-commerce

• e-signature

• email-management

• email-marketing

• employee-management

• enterprise-project-management

• enterprise-social-networking

2.4. List of software categories 23

Python

• erp

• event-management

• facility-management

• feedback-and-reviews-management

• financial-reporting

• fleet-management

• fundraising

• gamification

• geographic-information-systems

• grant-management

• graphic-design

• help-desk

• hr

• ide

• identity-management

• instant-messaging

• inventory-management

• it-asset-management

• it-development

• it-management

• it-security

• it-service-management

• knowledge-management

• learning-management-system

• marketing

• mind-mapping

• mobile-marketing

• mobile-payment

• network-management

• office

• online-booking

• online-community

• payment-gateway

• payroll

• predictive-analysis

• procurement

24 Chapter 2. Table of contents

Python

• productivity-suite

• project-collaboration

• project-management

• property-management

• real-estate-management

• remote-support

• resource-management

• sales-management

• seo

• service-desk

• social-media-management

• survey

• talent-management

• task-management

• taxes-management

• test-management

• time-management

• time-tracking

• translation

• video-conferencing

• video-editing

• visitor-management

• voip

• warehouse-management

• web-collaboration

• web-conferencing

• website-builder

• workflow-management

2.5 Scope list

Here follows a controlled vocabulary of useful tags for categorizing the software.

2.5. Scope list 25

Python

2.5.1 Valid Tags

• agriculture

• culture

• defence

• education

• emergency-services

• employment

• energy

• environment

• finance-and-economic-development

• foreign-affairs

• government

• healthcare

• infrastructures

• justice

• local-authorities

• manufacturing

• research

• science-and-technology

• security

• society

• sport

• tourism

• transportation

• welfare

2.6 Examples

Below there are two examples of publiccode.yml files, the first one represents the minimum configuration, which
contains the mandatory fields, whilst the second one represents a more extended version.

26 Chapter 2. Table of contents

Python

2.6.1 Minimum Version

1 publiccodeYmlVersion: "0.2"
2

3 name: Medusa
4 url: "https://example.com/italia/medusa.git"
5 softwareVersion: "dev" # Optional
6 releaseDate: "2017-04-15"
7 platforms:
8 - web
9

10 categories:
11 - financial-reporting
12

13 developmentStatus: development
14

15 softwareType: "standalone/desktop"
16

17 description:
18 en:
19 localisedName: medusa # Optional
20 genericName: Text Editor
21 shortDescription: >
22 A rather short description which
23 is probably useless
24

25 longDescription: >
26 Very long description of this software, also split
27 on multiple rows. You should note what the software
28 is and why one should need it. We can potentially
29 have many pages of text here.
30

31 features:
32 - Just one feature
33

34 legal:
35 license: AGPL-3.0-or-later
36

37 maintenance:
38 type: "community"
39

40 contacts:
41 - name: Francesco Rossi
42

43 localisation:
44 localisationReady: yes
45 availableLanguages:
46 - en

2.6. Examples 27

Python

2.6.2 Extended Version

1 publiccodeYmlVersion: "0.2"
2

3 name: Medusa
4 applicationSuite: MegaProductivitySuite
5 url: "https://example.com/italia/medusa.git"
6 landingURL: "https://example.com/italia/medusa"
7 isBasedOn: "https://github.com/italia/otello.git"
8 softwareVersion: "1.0"
9 releaseDate: "2017-04-15"

10 logo: img/logo.svg
11 monochromeLogo: img/logo-mono.svg
12

13 inputTypes:
14 - text/plain
15 outputTypes:
16 - text/plain
17

18 platforms:
19 - android
20 - ios
21

22 categories:
23 - content-management
24 - office
25

26 usedBy:
27 - Comune di Firenze
28 - Comune di Roma
29

30 roadmap: "https://example.com/italia/medusa/roadmap"
31

32 developmentStatus: development
33

34 softwareType: "standalone/desktop"
35

36 intendedAudience:
37 scope:
38 - science-and-technology
39 countries:
40 - it
41 - de
42 unsupportedCountries:
43 - us
44

45 description:
46 en:
47 localisedName: Medusa
48 genericName: Text Editor
49 shortDescription: >
50 This description can have a maximum 150
51 characters long. We should not fill the
52 remaining space with "Lorem Ipsum". End
53

54 longDescription: >
55 Very long description of this software, also split

(continues on next page)

28 Chapter 2. Table of contents

Python

(continued from previous page)

56 on multiple rows. You should note what the software
57 is and why one should need it.
58

59 documentation: "https://read.the.documentation/medusa/v1.0"
60 apiDocumentation: "https://read.the.api.doc/medusa/v1.0"
61

62 features:
63 - Very important feature
64 - Will run without a problem
65 - Has zero bugs
66 - Solves all the problems of the world
67 screenshots:
68 - img/sshot1.jpg
69 - img/sshot2.jpg
70 - img/sshot3.jpg
71 videos:
72 - https://youtube.com/xxxxxxxx
73 awards:
74 - 1st Price Software of the year
75

76 legal:
77 license: AGPL-3.0-or-later
78 mainCopyrightOwner: City of Chicago
79 repoOwner: City of Chicago
80 authorsFile: AUTHORS
81

82 maintenance:
83 type: "contract"
84

85 contractors:
86 - name: "Fornitore Privato SPA"
87 email: "dario.bianchi@fornitore.it"
88 website: "https://privatecompany.com"
89 until: "2019-01-01"
90

91 contacts:
92 - name: Francesco Rossi
93 email: "francesco.rossi@comune.reggioemilia.it"
94 affiliation: Comune di Reggio Emilia
95 phone: "+3923113215112"
96

97 localisation:
98 localisationReady: yes
99 availableLanguages:

100 - en
101 - it
102 - fr
103 - de
104

105 dependsOn:
106 open:
107 - name: MySQL
108 versionMin: "1.1"
109 versionMax: "1.3"
110 optional: yes
111 - name: PostgreSQL
112 version: "3.2"

(continues on next page)

2.6. Examples 29

Python

(continued from previous page)

113 optional: yes
114 proprietary:
115 - name: Oracle
116 versionMin: "11.4"
117 - name: IBM SoftLayer
118 hardware:
119 - name: NFC Reader
120 optional: yes
121

122 it:
123 countryExtensionVersion: "0.2"
124

125 conforme:
126 lineeGuidaDesign: yes
127 modelloInteroperabilita: yes
128 misureMinimeSicurezza: yes
129 gdpr: yes
130

131 piattaforme:
132 spid: yes
133 cie: yes
134 anpr: yes
135 pagopa: yes
136

137 riuso:
138 codiceIPA: c_h501

30 Chapter 2. Table of contents

	See also
	Table of contents
	The Standard (core)
	Country-Specific Extensions
	Forks and variants
	List of software categories
	Scope list
	Examples

